(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0) → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0, s(Y)) → 0
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
plus(s(X), Y) →+ s(plus(X, Y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / s(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
plus(0', Y) → Y
plus(s(X), Y) → s(plus(X, Y))
min(X, 0') → X
min(s(X), s(Y)) → min(X, Y)
min(min(X, Y), Z) → min(X, plus(Y, Z))
quot(0', s(Y)) → 0'
quot(s(X), s(Y)) → s(quot(min(X, Y), s(Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
plus,
min,
quotThey will be analysed ascendingly in the following order:
plus < min
min < quot
(8) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
The following defined symbols remain to be analysed:
plus, min, quot
They will be analysed ascendingly in the following order:
plus < min
min < quot
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s:Z2_0(
n4_0),
gen_0':s:Z2_0(
b)) →
gen_0':s:Z2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
plus(gen_0':s:Z2_0(0), gen_0':s:Z2_0(b)) →RΩ(1)
gen_0':s:Z2_0(b)
Induction Step:
plus(gen_0':s:Z2_0(+(n4_0, 1)), gen_0':s:Z2_0(b)) →RΩ(1)
s(plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b))) →IH
s(gen_0':s:Z2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Lemmas:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
The following defined symbols remain to be analysed:
min, quot
They will be analysed ascendingly in the following order:
min < quot
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s:Z2_0(
n457_0),
gen_0':s:Z2_0(
n457_0)) →
gen_0':s:Z2_0(
0), rt ∈ Ω(1 + n457
0)
Induction Base:
min(gen_0':s:Z2_0(0), gen_0':s:Z2_0(0)) →RΩ(1)
gen_0':s:Z2_0(0)
Induction Step:
min(gen_0':s:Z2_0(+(n457_0, 1)), gen_0':s:Z2_0(+(n457_0, 1))) →RΩ(1)
min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) →IH
gen_0':s:Z2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Lemmas:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) → gen_0':s:Z2_0(0), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
The following defined symbols remain to be analysed:
quot
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(16) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Lemmas:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) → gen_0':s:Z2_0(0), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Lemmas:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
min(gen_0':s:Z2_0(n457_0), gen_0':s:Z2_0(n457_0)) → gen_0':s:Z2_0(0), rt ∈ Ω(1 + n4570)
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
plus(
0',
Y) →
Yplus(
s(
X),
Y) →
s(
plus(
X,
Y))
min(
X,
0') →
Xmin(
s(
X),
s(
Y)) →
min(
X,
Y)
min(
min(
X,
Y),
Z) →
min(
X,
plus(
Y,
Z))
quot(
0',
s(
Y)) →
0'quot(
s(
X),
s(
Y)) →
s(
quot(
min(
X,
Y),
s(
Y)))
Types:
plus :: 0':s:Z → 0':s:Z → 0':s:Z
0' :: 0':s:Z
s :: 0':s:Z → 0':s:Z
min :: 0':s:Z → 0':s:Z → 0':s:Z
Z :: 0':s:Z
quot :: 0':s:Z → 0':s:Z → 0':s:Z
hole_0':s:Z1_0 :: 0':s:Z
gen_0':s:Z2_0 :: Nat → 0':s:Z
Lemmas:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:Z2_0(0) ⇔ 0'
gen_0':s:Z2_0(+(x, 1)) ⇔ s(gen_0':s:Z2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
plus(gen_0':s:Z2_0(n4_0), gen_0':s:Z2_0(b)) → gen_0':s:Z2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(24) BOUNDS(n^1, INF)